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Parameters for Optimum Separations in 
Field-Flow Fractionation 

J.  CALVIN GIDDINGS 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 84112 

Abstract 

Parameters that yield optimum separations in field-flow fractionation (FFF) 
are investigated. Expressions for minimum plate height and optimum velocity 
are derived. It is shown that a typical FFF column is theoretically capable 
of yielding 12,000 plates per foot. With increasing retention, plate height 
decreases and optimum velocity increases. Minimum time conditions, analyzed 
next, are related to the rate of generation of theoretical plates. The latter 
increases with the rate of molecular transport and, surprisingly, with reten- 
tion. Practical hurdles to achieving an infinite rate of generation of plates by 
going to infinite retention are discussed. Finally, a comparison is made between 
optimum separations using FFF and using direct fields (electrophoresis, 
sedimentation, and related methods.) 

INTRODUCTION 

In an earlier paper a physical basis was established for retention and 
plate height in field-flow fractionation ( I ) .  In  particular, attention was 
focused on the important limiting case in which zones were considerably 
retained. The condition for this limiting case is expressed by R << 1, where 
R is the retention ratio-the ratio of zone velocity Y to mean carrier flow 
velocity ( v ) .  I f  one assumes that the velocity profile is parabolic within a 
flattened channel of width w (a channel between two flat plates that are 
theoretically of infinite extent), then in the limiting retention case some 
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568 GlDDlNGS 

very simple equations arise for retention and plate height (1-3) : 

R = 61 (1) 

where D is the diffusion coefficient, 1 is the mean height of the solute layer 
in a zone, 1 equals l/w, and X H ,  is the sum of various plate height terms 
arising in external dead volumes, relaxation processes, and solute hetero- 
geneity. 

In this paper we shall explore the implications that these and related 
equations have in achieving separation. In particular we shall examine the 
magnitude of the minimum achievable plate height, the optimum velocity, 
the potential speed of separation, and the relative efficiency of FFF and 
other methods of separation. 

MINIMUM PLATE HEIGHT AND OPTIMUM VELOCITY 

In a FFF column that is functioning with a minimum of extraneous 
disturbances, the plate height terms represented by Z H i  may be neglected. 
In  this case the plate height is 

This is similar in form to the expression for capillary columns in chromato- 
graphy, but the velocity term differs in one significant detail. Velocity here 
is the mean zone velocity, V = R(u) ,  whereas in chromatography the 
mean solvent velocity, ( u ) ,  is universally used. Nonetheless coefficient B 
is identical in the two cases because the respective velocities are reflective of 
the length of time spent in the mobile phase (the only phase in FFF) where 
the bulk of diffusion occurs. 

The minimum plate height (with respect to velocity changes) achievable 
in FFF is obtained by setting the derivative, d H / d V ,  equal to zero. This 
minimum, and the corresponding optimum velocity, are given by 

Hmin = 2 JBC = JE1 = 5.661 

Vopt = J T C  = D/$l = 0.7070/1 

(4) 

( 5 )  

Since 1 is not directly observable, it is desirable to seek alternate expres- 
sions. One approach is to use the limiting retention expression of Eq. (1): 
R = 61 = 6(l/w). This yields 
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PARAMETERS FOR OPTIMUM SEPARATIONS IN FFF 569 

When this is substituted above, Hmin becomes 

J32 Hmin = - RW = 0.94Rw E RW 
6 (7) 

In words, the minimum plate height is now approximately equal to the 
product of two observable parameters: the retention ratio R and the col- 
umn width M’. This expression shows that Hmi, drops rapidly with increas- 
ing retention (decreasing R). Hence one expects to get the best resolution 
for the most highly retained peaks. These are ordinarily the high molecular 
weight component of the mixture. 

In a typical case we may expect a zone with a retention of R = 0.1 to 
be migrating in a column of width w = 0.025 cm. The minimum plate 
height, fiom Eq. (7), would be Hmi, = 0.0024 cm or 24p. This would 
provide over 12,000 plates/foot, a very satisfactory efficiency indeed. 

Substitutions also provide insight into variations of the optimum 
velocity, Yopt. When the limiting expression from Eq. (6), I = Rw/6, is 
substituted into Eq. (9, we get 

- D  
Yopt = 418- Rw 

Since Yopl = R ( U ) , ~ ~ ,  the optimum mean velocity of the carrier fluid is 

This equation shows ( u ) , , , ~  to be greatest for columns of narrow width, w. 
It shows also a significant trend with changes in retention parameter R. 
Highly retained components exhibit relatively large ( u ) , ~ ,  values because 
of the inverse square dependence on R. The dependence on diffusion 
coefficient D may ameliorate this effect slightly, because in many systems 
low R values go hand in hand with high molecular weight and thus low 
D values. However, at the most, D only partially offsets the significant 
relationship between (u),,, and R suggested by Eq. (9). 

The foregoing results suggest that a flow programming system might 
be useful for FFF. The early peaks could be eluted under low-flow condi- 
tions and for successive peaks the flow rate could be increased. This would 
not only keep the system closer to optimum resolution throughout the run, 
but it would also speed up the highly retained peaks which might otherwise 
require an inordinate time for elution. 
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570 GIDDINGS 

Another way to express VOp, is attained by using the basic formula (2 )  
for I 

I = DjU (10) 

where U is the drift velocity-the mean molecular velocity induced by the 
field. When this is substituted for I in Eq. (5), we obtain the equations 

The topmost expression shows that the optimum rate of travel of the peak 
is just slightly below the field-induced drift velocity. 

Some numbers are useful at this point. A typical macromolecule under 
conditions of moderately high retention may be associated with parameters 
in the vicinity of D = lo-’ cm2/sec, w = 0.025 cm, and R = 0.1. Various 
equations above can be used to obtain other approximate parameters: 
I = 0.0004 cm (4 p), U = 0.00024 cmjsec, and Hmin = 0.0024 cm. The 
optimum zone velocity, Eq. (1 l), is therefore approximately 0.0002 cmjsec 
or 0.7 cmjhr. This velocity is very low. It suggests that the principal chal- 
lenge in developing FFF methodology is to obtain reasonable separation 
speed. It must be kept in mind that macromolecular separations are 
inherently slow in any system because of their sluggish transport char- 
acteristics. Hence the need to speed up macromolecular separation pro- 
cesses is generally crucial. Next we explore this topic for FFF. 

SEPARATION SPEED IN FFF 
If retention conditions are specified (preferably corresponding to favor- 

able conditions), any given separation requires some minimum number of 
theoretical plates, Nminr for its successful realization. Equations are avail- 
able for specifying the number of plates needed to obtain either some 
minimum resolution between two peaks, ( 4 , 5 )  or some minimum number 
of peaks resolvable in a single run (the peak capacity) (5,6). The time 
required to meet these minimum conditions is the time needed to generate 
the Nmin theoretical plates. This time is 

t = Nmi,,/N (13) 
where N is the rate of generation of plates. Minimum time, of course, is 
achieved only with a maximal level of fi. 

To an approximation, a theoretical plate is generated every time mole- 
cules in different streamlines have an opportunity to intermix (7). The 
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time required for this, as pointed out in the previous paper (I), is the time 
needed to diffuse a distance 21 

(242 212 t p - - = -  
2 0  D 

By this simple model the number of plates that can be generated per unit 
of time is simply the reciprocal of the time, I,, needed to generate a single 
plate 

. l D  N = - - m - - - -  
t ,  2i2 

Thus separation speed increases with increasing diffusivity and with increas- 
ing compression of the solute layer. 

The full conditions needed to maximize N are best seen by proceeding 
more rigorously. The method is parallel to that used for chromatography 
(4). Quantity N can be written as 

. 9'" R ( v )  N = - = -  
H H  

Use of the plate height expression in Eq. (3) leads to 

1 
N = ( B p - 2 )  + c 

With the help of Eq. ( 5 )  this reduces to 

When the peak velocity equals the optimum velocity, 
Ij2C. However as Y exceeds Vop,, N approaches 

Nmax = 1/C = D/412 

Y = VOpl, NequaIs 
its maximum value 

(19) 

where the latter form was obtained using the definition of C from Eq. (3). 
This equation has the same functional form as the more simply-derived 
Eq. (15). Both equations suggest the desirability of maximizing D and 
minimizing 1. Derivation of the latter equation shows, in addition, the 
desirability of operating above the "optimum" flow velocity. 

Some alternate forms of Eq. (19) are instructive. I f  DjU is used in place 
of I (Eq. lo), we get 

Nmax = U2/4D (20) 
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572 GIDDINGS 

This equation shows the importance of maximizing the field-induced 
drift velocity, U .  It also appears to contradict Eq. (19) in suggesting a 
minimum diffusivity D, but in fact it does not do so. Both D and Lr are 
inversely related to the friction coefficient of molecules, f. Changes in 
solvent are reflected in parameterf, and this in turn affects D and U. 
Equations (19) and (20) both agree that 

N,,, = constant/’ (21) 

so that in either case a minimumf(maximum D as well as U )  is desired. 
This is best attained by using a low molecular-weight, nonviscous carrier 
at  the highest practical temperature. 

Another useful form of fimax is obtained by substituting 1 = Rw/6 from 
Eq. (6)  into Eq. (19). This yields 

Nmax = 9D/R2w2 (22) 
This shows, in addition to the above, that the potential rate of generation 
of plates increases dramatically with decreases in both retention ratio R 
and column width w. The inverse dependence on w2 is fully expected. Any 
reduction in the dimensions over which diffusion must occur will speed 
the diffusive inteichange of solute. The same is tiue, of course, in chro- 
matography (4).  

Unlike chromatography, FFF is theoretically capable, according to 
Eq. (22), of generating plates faster with highly retained peaks than with 
moderately retained peaks. One might expect the opposite result; slower- 
moving peaks will generate fewer plates per second, all other things being 
constant. But all other factors are not constant in FFF: highly retained 
solute peaks are compressed by the field into very thin layers. The reduced 
diffusion distance (and therefore time) required to traverse this layer 
explains the dramatic increase in the rate of acquiring plates. 

In theory, Nmax could be pushed to infinity by increasing retention 
(decreasing R) and decreasing w. Several practical limits eventually inter- 
cede to prevent this ultimate achievement-an infinitely fast separation of 
arbitrary difficulty. Attempts to reduce R are limited, first of all, by the 
finite strength of the external field. Second, an infinitely compressed solute 
layer requires an infinitely smooth surface over which to glide. A significant 
disturbance of the system will occur when surface hills and gullies (or the 
size of the molecules themselves) exceed I in size. Third, a highly com- 
pressed solute layer implies either a very high solute concentration, with 
attendant nonlinearities, or vanishingly small samples. Fourth, the pressure 
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needed to maintain flow above VOp, will ultimately increase to impractical 
levels. 

Attempts to reduce column dimensions are similarly limited; increased 
field strengths, smoothei surfaces, smaller samples, and greater pressure 
drops are necessary to maintain the same retention ratio R in the face of 
a decreasing w. It will be interesting to  see which of these limitations 
eventually poses the most significant barrier to further increases in N,,,,,. 

Equation (22) can be used to estimate a typical (not ultimate) value to 
be expected for &,,,ax. Assuming, as in the previous examples, that D = 
lo-’ cm2/sec, MY = 0.025 cm, and R = 0.1, then Eq. (22) yields a value 
for N,,,,, of 0.14 plates/sec, or about 500 plates/hr. For smaller macro- 
molecules, D = cm2/sec, this would increase to 5000 plates/hr. 
These values, if obtainable in practice, are highly acceptable for separation 
in inherently sluggish systems of macromolecules. 

FFF A N D  DIRECT-FIELD METHODS 

We have made occasional reference above to the comparative charac- 
teristics of FFF and chromatography. Here we shall undertake the com- 
parison of FFF with direct-field (axial-field) methods of separation. A 
direct-field method is one, like electrophoresis or centrifugation, that 
causes differential migration in the field direction. In FFF the field and 
the axis of separation are perpendicular to one another. These methods, 
despite essential differences, can be compared on the basis of theoretical 
plate generation. 

In a direct-field method, drift velocity U becomes a simple measure of 
the rate of progress of zones in the field direction. Plate height is simply 
obtained by the definition H = 0 2 / L  = 2D?/Ut, or (5) 

Hmi, = 2D/U (direct field) (23) 

This assumes that no convective currents or other adverse influences are 
at work. For comparison the optimized plate height of FFF can be obtained 
by combining Eq. (4) and (lo), giving 

Hmin = J Z D / U  (FFF) (24) 

The ratio of the two is 

This shows that under equivalent conditions ofdiffusivity and field strength, 
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the direct-field (DF) methods have a minimum plate height that is 2.8 
times lower than that of FFF. 

As pointed out earlier, the maximum rate of generation of theoretical 
plates, Nmax, is a more significant criterion than Hmin for separation 
efficacy in macromolecular systems. For direct-field methods Nmax is 
simply U / H ,  or, with the aid of Eq. ( 2 3 )  

NmaX = U 2 / 2 D  (DF) (26) 

Equation (20) gives the comparable expression for FFF 

Nmax = U 2 / 4 D  (FFF) (27) 

Consequently the ratio is 

showing that direct-field methods are capable of producing plates twice 
as rapidly as FFF systems under equal conditions of field strength and 
diffusivity. 

The foregoing results suggest that direct-field systems have a slight 
edge over the FFF approach. However, they do not reflect some serious 
handicaps of certain direct-field methods, nor do they reflxt several 
advantageous characteristics of FFF. 

From an experimental point of view, FFF is an elution technique, having 
inherent advantages in sample collection and analysis. More important 
from a fundamental point of view, FFF permits the more efficient use of 
available applied fields and in many cases allows the utilization of higher 
maximum field strengths (and thus U’s) .  Increasing field strength, as shown 
by the role of U in Eq. (24)  and (27), very rapidly makes up for the slight 
inherent disadvantages of FFF. 

Some examples of the advantageous utilization of fields by FFF can be 
simply illustrated. 

I .  The maximum field strength in centrifugation occurs only at the 
outmost bounds of the rotating system; much of the separation takes 
place at lesser field closer to the axis. In gravitational FFF one can coil 
the flow tube flat against the outer perimeter, thus using the maximum 
field strength a t  all times. 

2. The electrical field strength applicable to electrophoresis is limited 
by thermal effects. However, thermal effects in electrical FFF are not 
disadvantageous (8); indeed one method of FFF (thermal) relies on the 
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PARAMETERS FOR OPTIMUM SEPARATIONS IN FFF 575 

existence of a strong temperature gradient and its associated thermal 
diffusion. 

3. FFF is effectivery a multistage process, in the sense that the same 
field is used over and over again as components migrate along the channel. 
Reuse of the field makes it possible to achieve separation with much smaller 
potential drops (9).  A potential drop of merely 1 V over a 0.25-mm wide 
FFF column will provide the same field intensity (and hence comparable 
results) as 2000 V used on a 50-cm electrophoresis strip. The FFF column 
can then be extended to any desired length, without additional potential 
drop (of course an increased current is required), to achieve any desired 
number of theoretical plates (9).  This feature is particularly advantageous 
with thermal diffusion. I t  can be shown that direct thermal diffusive separa- 
tions are virtually impossible because the largest practical temperature 
drops (around 100°C) are incapable of providing adequate fractionation. 
By contrast, thermal FFF is capable of producing multicomponent poly- 
mer separations (10). 

The foregoing analysis shows that FFF has a substantial theoretical 
potential. The crucial question, which we have only started to explore, 
is whether (and when) this theoretical efficacy can be fully converted into 
practical utility. 
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